UNIVERSITY of WASHINGTON

Bilinear Dynamic Mode Decomposition for Quantum Control

< Quantum chip for transmon qubits ^ Dilution refrigerator

Acknowledgements

Steve Brunton, Eurika Kaiser, & Nathan Kutz

Jonathan DuBois

W UNIVERSITY of WASHINGTON Lawrence Livermore National Laboratory

QISE-NET

QUANTUM INFORMATION SCIENCE AND ENGINEERING NETWORK

Goals

> Data-driven discovery of effective Hamiltonian models

- > ...For the optimal control of quantum gates and common algorithm sub-routines
- >To enhance the utility of Noisy, Intermediate Scale Quantum (NISQ) devices

Goals

- > Data-driven discovery of effective Hamiltonian models
- > ...For the optimal control of quantum gates and common algorithm sub-routines
- >To enhance the utility of Noisy, Intermediate Scale Quantum (NISQ) devices

Goals

- > Data-driven discovery of effective Hamiltonian models
- > ...For the optimal control of quantum gates and common algorithm sub-routines
- >To enhance the utility of Noisy, Intermediate Scale Quantum (NISQ) devices

Building a quantum computer

> How many qubits do we want?

Caffeine ground state: 100s of qubits

- > 1000s of high-fidelity (99.9%) physical qubits for 1 logical qubit using quantum error correction.
- > <u>NISQ era</u>: 100-1000s of physical qubits without error correction

J. Preskill, Quantum. 2, 79 (2018).

Building a quantum computer

> How many qubits do we want?

Caffeine ground state: <u>Millions</u> of qubits

- > 1000s of high-fidelity (99.9%) physical qubits for 1 logical qubit using quantum error correction.
- > NISQ era: 100-1000s of physical qubits without error correction

J. Preskill, Quantum. 2, 79 (2018).

Building a quantum computer

> How many qubits do we want?

Caffeine ground state: <u>Millions</u> of qubits

- > 1000s of high-fidelity (99.9%) physical qubits for 1 logical qubit using quantum error correction.
- > NISQ era: 100-1000s of physical qubits without error correction

J. Preskill, Quantum. 2, 79 (2018).

Moore's law for superconducting qubits

W

M. Kjaergaard et al. Annu. Rev. Condens. Matter Phys. 11, 369–395 (2020)

Quantum computing: Layers of abstraction

Thomas Alexander et al. Quantum Sci. Technol. 5 044006 (2020)

Quantum computing: Layers of abstraction

Thomas Alexander et al. Quantum Sci. Technol. 5 044006 (2020)

Pulse-level control

> Quantum dynamics act linearly on the state. $\frac{\partial \Psi}{\partial t} = -iH\Psi$

> Quantum control dynamics are bilinear in the state and control.

$$\frac{\partial \Psi}{\partial t} = -iH(u)\Psi$$
$$H(u) = H_0 + \sum_{j=1}^J u_j H_j$$

Pulse-level control

> Quantum dynamics act linearly on the state. $\frac{\partial \Psi}{\partial t} = -iH\Psi$

> Quantum control dynamics are bilinear in the state and control.

$$\frac{\partial \Psi}{\partial t} = -iH(u)\Psi$$
$$H(u) = H_0 + \sum_{j=1}^J u_j H_j$$

> Open loop: Design pulse using known models.

- > Optimize a cost function to improve upon parameterized pulses.
 - GRAPE, CRAB, Krotov, etc.
- > Bad models mean bad gates.

> Open loop: Design pulse using known models.

- > Optimize a cost function to improve upon parameterized pulses.
 - GRAPE, CRAB, Krotov, etc.
- > Bad models mean bad gates.

- > Open loop: Design pulse using known models.
- > Optimize a cost function to improve upon parameterized pulses.
 - GRAPE, CRAB, Krotov, etc.
- > Bad models mean bad gates.

1. Unknown dynamics

- 2. Noise
- 3. Leakage to non-qubit states
- 4. Nonlinear control distortions
- 5. Cross-talk
- > Difficulty increases with scale.
 - A balancing act: protect (detune) vs. operate (couple)

1. Unknown dynamics

2. Noise

- 3. Leakage to non-qubit states
- 4. Nonlinear control distortions
- 5. Cross-talk
- > Difficulty increases with scale.
 - A balancing act: protect (detune) vs. operate (couple)

- 1. Unknown dynamics
- 2. Noise
- 3. Leakage to non-qubit states
- 4. Nonlinear control distortions
- 5. Cross-talk
- > Difficulty increases with scale.
 - A balancing act: protect (detune) vs. operate (couple)

- 1. Unknown dynamics
- 2. Noise
- 3. Leakage to non-qubit states
- 4. Nonlinear control distortions
- 5. Cross-talk
- > Difficulty increases with scale.
 - A balancing act: protect (detune) vs. operate (couple)

- 1. Unknown dynamics
- 2. Noise
- 3. Leakage to non-qubit states
- 4. Nonlinear control distortions
- 5. Cross-talk
- > Difficulty increases with scale.
 - A balancing act: protect (detune) vs. operate (couple)

Example: CZ gate

> Even modeling errors $\Delta < 1\%$ ruined the gate.

D J Egger and F K Wilhelm 2014 Supercond. Sci. Technol. 27 014001

Use data.

> Model-based

> Model-free

 Ex post facto pulses "suited to the single yet uncertain physical system at hand".

D. J. Egger, F. K. Wilhelm,. Phys. Rev. Lett. 112 (2014)

- Reinforcement learning
- > Synthesis: Data-driven models suited to the system at hand.

Use data.

> Model-based

> Model-free

 Ex post facto pulses "suited to the single yet uncertain physical system at hand".

D. J. Egger, F. K. Wilhelm, Phys. Rev. Lett. 112 (2014)

Reinforcement learning

> Synthesis: Data-driven models suited to the system at hand.

Use data.

> Model-based

> Model-free

 Ex post facto pulses "suited to the single yet uncertain physical system at hand".

D. J. Egger, F. K. Wilhelm, Phys. Rev. Lett. 112 (2014)

Reinforcement learning

> Synthesis: Data-driven models suited to the system at hand.

Use data.

- > Model-based
- > Model-free
 - Ex post facto pulses "suited to the single yet uncertain physical system at hand".
 - D. J. Egger, F. K. Wilhelm,. Phys. Rev. Lett. 112 (2014)
 - Reinforcement learning

> Synthesis: Data-driven models suited to the system at hand.

Dynamic mode decomposition

Can we retain the underlying (effective) Hamiltonian structure?

Dynamic mode decomposition

Can we retain the underlying (effective) Hamiltonian structure?

> Goal: find a generator that describes the dynamics of a collection of observables.

DMD: model-free regression.

1. Collect data.

2. Assemble snapshot matrices.

3. Compute the regression.

DMD: model reduction.

DMD: model reduction.

Quantum system identification

Examples:

- > Hamiltonian identification
 - Via special-case quantum process tomography

<u>E.g.,</u> Y. Wang, et al. IEEE Trans. Automat. Contr. 63, 1388–1403 (2018).

- > Measurement time traces
 - Eigensystem realization algorithm

J. Zhang, M. Sarovar, Phys. Rev. Lett. 113 (2014)

> We want <u>disambiguation</u> of the dynamics from the effects of actuation.

Quantum system identification

Examples:

- > Hamiltonian identification
 - Via special-case quantum process tomography

<u>E.g.,</u> Y. Wang, et al. IEEE Trans. Automat. Contr. 63, 1388–1403 (2018).

- > Measurement time traces
 - Eigensystem realization algorithm

J. Zhang, M. Sarovar, Phys. Rev. Lett. 113 (2014)

> We want <u>disambiguation</u> of the dynamics from the effects of actuation.

Bilinear dynamic mode decomposition

Modifying DMDc for quantum control

J. Proctor et al. SIAM J. Appl. Dyn. Syst. (2016).

> Quantum control dynamics are bilinear: $H(t) = H_0 + \sum_{j=1}^{J} u_j(t)H_j$ > In terms of snapshot matrices, we want:

 $\mathbf{X}' \approx \mathbf{A} \mathbf{X} + \mathbf{B} (\mathbf{U} * \mathbf{X})$

A. Goldschmidt et al. New J. Phys. 23 033035 (2021). S. Peitz et al. SIAM J. Appl. Dyn. Syst. 19, 2162–2193 (2020). I. Gosea, I. Duff. arXiv:2003.06484 [math.NA] (2020).

1. Measure the state and record the control inputs.

BiDMD

1. Measure the state and record the control inputs.

2. Assemble snapshot matrices.

BiDMD

1. Measure the state and record the control inputs.

2. Assemble snapshot matrices.

$$\mathbf{X} = \begin{bmatrix} | & | & | & | \\ \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_{M-1} \\ | & | & | & | \end{bmatrix}$$
$$\mathbf{X}' = \begin{bmatrix} | & | & | & | \\ \mathbf{x}_2 & \mathbf{x}_3 & \cdots & \mathbf{x}_M \\ | & | & | & | \end{bmatrix}$$
$$\mathbf{U} = \begin{bmatrix} | & | & | & | \\ \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_{M-1} \\ | & | & | & | \end{bmatrix}$$

3. Multiply.
$$\mathbf{U} * \mathbf{X} = \begin{bmatrix} | & | & | & | \\ \mathbf{u}_1 \otimes \mathbf{x}_1 & \mathbf{u}_2 \otimes \mathbf{x}_2 & \dots & \mathbf{u}_{M-1} \otimes \mathbf{x}_{M-1} \\ | & | & | & | \end{bmatrix}$$

BiDMD

1. Measure the state and record the control inputs.

2. Assemble snapshot matrices.

$$\mathbf{X} = \begin{bmatrix} | & | & | & | \\ \mathbf{x}_1 & \mathbf{x}_2 & \cdots & \mathbf{x}_{M-1} \\ | & | & | & | \end{bmatrix}$$
$$\mathbf{X}' = \begin{bmatrix} | & | & | & | \\ \mathbf{x}_2 & \mathbf{x}_3 & \cdots & \mathbf{x}_M \\ | & | & | & | \end{bmatrix}$$
$$\mathbf{U} = \begin{bmatrix} | & | & | & | \\ \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_{M-1} \\ | & | & | & | \end{bmatrix}$$

3. Multiply.
$$\mathbf{U} * \mathbf{X} = \begin{bmatrix} | & | & | & | \\ \mathbf{u}_1 \otimes \mathbf{x}_1 & \mathbf{u}_2 \otimes \mathbf{x}_2 & \dots & \mathbf{u}_{M-1} \otimes \mathbf{x}_{M-1} \\ | & | & | & | \end{bmatrix}$$

4. Compute the regression.

$$\mathbf{X}' \approx \mathbf{A}\mathbf{X} + \mathbf{B}(\mathbf{U} * \mathbf{X}) \implies [\mathbf{A} \quad \mathbf{B}] \leftarrow \mathbf{X}' \begin{bmatrix} \mathbf{X} \\ \mathbf{U} * \mathbf{X} \end{bmatrix}^+$$

Using biDMD for quantum control

> Extend biDMD with respect to the control.

 $\mathbf{u}_{\mathbf{k}} \mapsto \begin{bmatrix} g_{1}(\mathbf{u}_{\mathbf{k}}) \\ g_{2}(\mathbf{u}_{\mathbf{k}}) \\ \vdots \\ g_{b}(\mathbf{u}_{\mathbf{k}}) \end{bmatrix} \qquad M. \text{ O. Williams et al.,} \\ \text{M. O. Williams et al.,} \\ \text{J Nonlinear Sci. 25,} \\ 1307-1346 (2015). \end{bmatrix}$

- Effective Hamiltonians produce lifted controls.
- Nonlinear control distortions must be discovered.
- Higher-order integrators remain control-affine if you put additional powers of u(t) into U.
- > Also, bootstrap to known models and incorporate operator constraints.

Using biDMD for quantum control

> Extend biDMD with respect to the control.

 $\mathbf{u}_{k} \mapsto \begin{bmatrix} g_{1}(\mathbf{u}_{k}) \\ g_{2}(\mathbf{u}_{k}) \\ \vdots \\ g_{b}(\mathbf{u}_{k}) \end{bmatrix}$ M. O. Williams et al., J Nonlinear Sci. 25, 1307–1346 (2015).

- Effective Hamiltonians produce lifted controls.
- Nonlinear control distortions must be discovered.
- Higher-order integrators remain control-affine if you put additional powers of u(t) into U.
- > Also, bootstrap to known models and incorporate operator constraints.

Using biDMD for quantum control

> Extend biDMD with respect to the control.

 $\mathbf{u}_{k} \mapsto \begin{bmatrix} g_{1}(\mathbf{u}_{k}) \\ g_{2}(\mathbf{u}_{k}) \\ \vdots \\ g_{b}(\mathbf{u}_{k}) \end{bmatrix}$ M. O. Williams et al., J Nonlinear Sci. 25, 1307–1346 (2015).

- Effective Hamiltonians produce lifted controls.
- Nonlinear control distortions must be discovered.
- Higher-order integrators remain control-affine if you put additional powers of u(t) into U.
- > Also, bootstrap to known models and incorporate operator constraints.

Two Examples

Apply bilinear DMD to a qubit in a rotating frame.

> Physical model: $\mathbf{H}(t) = \mathbf{\Delta} \mathbf{H}_{0} + u(t) \mathbf{H}_{1}$

> Snapshots:

State: $\mathbf{x}(t) = \begin{bmatrix} \langle \mathbf{x} (t) \rangle \\ \langle \mathbf{y}(t) \rangle \\ \langle \mathbf{z}(t) \rangle \end{bmatrix}$

Control:
$$\mathbf{g}(u(t)) = \begin{bmatrix} u(t) \\ u(t)^2 \\ u(t)^3 \\ u(t)^4 \end{bmatrix}$$

> Identify an effective model for a qubit.

> Identify an effective model for a qubit.

Example 1

> Test by playing a constant pulse.

> The biDMD accurately predicts the dynamics with just the initial condition and the new control.

> Identify an effective model for a qubit in the presence of unknown nonlinear distortions on the control: $\Theta(u) = u + 0.1u^2 + \cos(u)$

> A biDMD model with the extended control basis, g(u), captures the nonlinearity in the test pulse.

> There are lots of ways for modeling to go wrong.

- > Separately isolating each error can be difficult.
- > In a single framework, biDMD accommodates the unknown dynamics in an interpretable way.

- > There are lots of ways for modeling to go wrong.
- > Separately isolating each error can be difficult.
- > In a single framework, biDMD accommodates the unknown dynamics in an interpretable way.

- > There are lots of ways for modeling to go wrong.
- > Separately isolating each error can be difficult.
- > In a single framework, biDMD accommodates the unknown dynamics in an interpretable way.

- > There are lots of ways for modeling to go wrong.
- > Separately isolating each error can be difficult.
- > In a single framework, biDMD accommodates the unknown dynamics in an interpretable way.

- > There are lots of ways for modeling to go wrong.
- > Separately isolating each error can be difficult.
- > In a single framework, biDMD accommodates the unknown dynamics in an interpretable way.

Summary + questions?

A. Goldschmidt, E. Kaiser, J. L. DuBois, S. L. Brunton, J. N. Kutz, *Bilinear dynamic mode decomposition for quantum control*. New J. Phys. 23, 033035 (2021).

New work on model predictive control coming soon!

github.com/andgoldschmidt

UNIVERSITY of WASHINGTON

Backup slides

Extrapolation error for DMD

Model discrepancy at step n from training size m,

$$\left\| \mathbf{x}_{\mathrm{n}} - \hat{\mathbf{x}}_{\mathrm{n}}
ight\|_{2} \leq \kappa (\left\| \mathbf{x}_{\mathrm{m}} - \hat{\mathbf{x}}_{\mathrm{m}}
ight\|_{2} + (n-m)arepsilon_{m})$$

Training fit

Accumulation from numerical integration

- > True dynamics, **x**
- > Predicted dynamics (only x_0 known), \widehat{x}
- > Number of DMD modes, κ
- > In the limit of more snapshots, $\varepsilon_m \rightarrow 0$

Outside the RWA

- > In most quantum examples, the rotating wave approximation is appropriate.
- > We also looked at the case where we cannot make this approximation.
 - DMD can accommodate *stroboscopic* data using the *Floquet* theory and the *Magnus expansion* (see our paper for more).

Example 3 (Floquet DMD)

Like Example 1, drive a strongly-coupled qubit slightly off-resonance.

Collect snapshots into a Floquet data matrix with T-periodic columns.

$$u(t)=u_0\cos(\omega t)$$

$$\mathbf{X}_{\mathrm{F}} = egin{bmatrix} \mathbf{x}_1 & \mathbf{x}_{s+1} & \dots & \mathbf{x}_{(m-1)s+1} \ \mathbf{x}_2 & \mathbf{x}_{s+2} & \dots & \mathbf{x}_{(m-1)s+2} \ dots & dots & dots & dots \ \mathbf{x}_s & \mathbf{x}_{2s} & \dots & \mathbf{x}_{(m-1)s+s} \end{bmatrix}$$

$$\mathbf{X}_{\mathrm{F}}' = egin{bmatrix} \mathbf{x}_{s+1} & \mathbf{x}_{2s+1} & \dots & \mathbf{x}_{ms+1} \ \mathbf{x}_{s+2} & \mathbf{x}_{2s+2} & \dots & \mathbf{x}_{ms+2} \ dots & dots & dots & dots \ \mathbf{x}_{2s} & \mathbf{x}_{3s} & \dots & \mathbf{x}_{ms+s} \end{bmatrix}$$

Floquet DMD resolves the fast scale dynamics.

