Bilinear Dynamic Mode Decomposition for Quantum Control

< Quantum chip for transmon qubits

\wedge Dilution refrigerator

Acknowledgements

Steve Brunton, Eurika Kaiser, \& Nathan Kutz

WT UNIVERSITY of WASHINGTON
 Lawrence Livermore National Laboratory

QISE-NET

QUANTUM INFORMATION SCIENCE
AND ENGINEERING NETWORK

Goals

> Data-driven discovery of effective Hamiltonian models
> ...For the optimal control of quantum gates and common algorithm sub-routines
>To enhance the utility of Noisy, Intermediate Scale Quantum (NISQ) devices

Goals

> Data-driven discovery of effective Hamiltonian models
> ...For the optimal control of quantum gates and common algorithm sub-routines
....To enhance the utility of Noisy, Intermediate Scale Quantum (NISQ) devices

Goals

> Data-driven discovery of effective Hamiltonian models
> ...For the optimal control of quantum gates and common algorithm sub-routines
>To enhance the utility of Noisy, Intermediate Scale Quantum (NISQ) devices

Building a quantum computer

> How many qubits do we want?

Caffeine ground state: 100s of qubits
>1000 s of high-fidelity (99.9\%) physical qubits for 1 logical qubit using quantum error correction.
$>$ NISO era: 100-1000s of physical qubits without error correction
J. Preskill, Quantum. 2, 79 (2018).

Building a quantum computer

> How many qubits do we want?

Caffeine ground state: Millions of qubits
> 1000s of high-fidelity (99.9\%) physical qubits for 1 logical qubit using quantum error correction.
> NISQ era: 100-1000s of physical qubits without
error correction
J. Preskill, Quantum. 2, 79 (2018).

Building a quantum computer

> How many qubits do we want?

Caffeine ground state: Millions of qubits
> 1000s of high-fidelity (99.9\%) physical qubits for 1 logical qubit using quantum error correction.
> NISQ era: 100-1000s of physical qubits without error correction

Moore's law for superconducting qubits

M. Kjaergaard et al. Annu. Rev. Condens. Matter Phys. 11, 369-395 (2020)

Quantum computing: Layers of abstraction

Quantum computing: Layers of abstraction

Pulse-level control

> Quantum dynamics act linearly on the state.

$$
\frac{\partial \Psi}{\partial t}=-i H \Psi
$$

> Quantum control dynamics are bilinear in the state and control.

$$
\begin{aligned}
& \frac{\partial \Psi}{\partial t}=-\boldsymbol{i} \boldsymbol{H}(u) \Psi \\
& H(u)=H_{0}+\sum_{j=1}^{J} u_{j} H_{j}
\end{aligned}
$$

Pulse-level control

> Quantum dynamics act linearly on the state.

> Quantum control dynamics are bilinear in the state and control.

$$
\frac{\partial \Psi}{\partial t}=-i H(u) \Psi
$$

$$
H(u)=H_{0}+\sum_{j=1}^{J} u_{j} H_{j}
$$

Optimal control

> Open loop: Design pulse using known models.
> Optimize a cost function to improve upon parameterized pulses.

- GRAPE, CRAB, Krotov, etc.
> Bad models mean bad gates.

Optimal control

> Open loop: Design pulse using known models.
> Optimize a cost function to improve upon parameterized pulses.

- GRAPE, CRAB, Krotov, etc.
> Bad models mean bad gates.

Optimal control

> Open loop: Design pulse using known models.
> Optimize a cost function to improve upon
parameterized pulses.

- GRAPE, CRAB, Krotov, etc.
> Bad models mean bad gates.

Modeling challenges

1. Unknown dynamics
2. Noise
3. Leakage to non-qubit states
4. Nonlinear control distortions
5. Cross-talk
> Difficulty increases with scale.

- A balancing act: protect (detune) vs. operate (couple)

Modeling challenges

1. Unknown dynamics
2. Noise
3. Leakage to non-qubit states
4. Nonlinear control distortions
5. Cross-talk
> Difficulty increases with scale.

- A balancing act: protect (detune) vs. operate (couple)

Modeling challenges

1. Unknown dynamics

2. Noise
3. Leakage to non-qubit states
4. Nonlinear control distortions

Superconducting phase, ϕ
> Difficulty increases with scale.

- A balancing act: protect (detune) vs. operate (couple)

Modeling challenges

1. Unknown dynamics

2. Noise
3. Leakage to non-qubit states
4. Nonlinear control distortions
5. Cross-talk

Superconducting phase, ϕ
> Difficulty increases with scale.

- A balancing act: protect (detune) vs. operate (couple)

Modeling challenges

1. Unknown dynamics

2. Noise
3. Leakage to non-qubit states
4. Nonlinear control distortions
5. Cross-talk

Superconducting phase, ϕ
> Difficulty increases with scale.

- A balancing act: protect (detune) vs. operate (couple)

Example: CZ gate

Example: CZ gate

$>$ Even modeling errors $\Delta<1 \%$ ruined the gate.
Gate Fidelity Φ \%

D J Egger and F K Wilhelm 2014 Supercond. Sci. Technol. 27014001

Improvements

Use data.
> Model-based
> Model-free

- Ex post facto pulses "suited to the single yet uncertain physical system at hand".
D. J. Egger, F. K. Wilhelm, Phys. Rev. Lett. 112 (2014)
- Reinforcement learning
> Synthesis: Data-driven models suited to the system at hand.

Improvements

Use data.

> Model-based
> Model-free

- Ex post facto pulses "suited to the single yet uncertain physical system at hand".
D. J. Egger, F. K. Wilhelm,. Phys. Rev. Lett. 112 (2014)
- Reinforcement learning
> Synthesis: Data-driven models suited to the system at hand.

Improvements

Use data.

> Model-based
> Model-free

- Ex post facto pulses "suited to the single yet uncertain physical system at hand".
D. J. Egger, F. K. Wilhelm,. Phys. Rev. Lett. 112 (2014)
- Reinforcement learning
> Synthesis: Data-driven models suited to the system at hand.

Improvements

Use data.

> Model-based
> Model-free

- Ex post facto pullses "suited to the single yet uncertain physical system at hand"。
- Reinforcement learning
> Synthesis: Data-driven models suited to the system at hand.

Dynamic mode decomposition

Can we retain the underlying (effective) Hamiltonian structure?

Dynamic mode decomposition

Can we retain the underlying (effective) Hamiltonian structure?
> Goal: find a generator that describes the dynamics of a collection of observables.

DMD: model-free regression.

1. Collect data.

2. Compute the regression.
$\mathbf{X}^{\prime} \approx \mathbf{A X} \Rightarrow \mathbf{A} \leftarrow \mathbf{X}^{\prime} \mathbf{X}^{+}$

DMD: model reduction.

DMD model,
$\sum_{j} \mathrm{v}_{\mathrm{j}} e^{\lambda_{j} t} c_{j}$

\mathbf{W}

DMD: model reduction.

DMD model,
$\sum_{j} \mathrm{v}_{\mathrm{j}} e^{\lambda_{j} t} c_{j}$

Quantum system identification

Examples:
> Hamiltonian identification

- Via special-case quantum process tomography
E.g._Y. Wang, et al. IEEE Trans. Automat. Contr. 63, 1388-1403 (2018).
> Measurement time traces
- Eigensystem realization algorithm
J. Zhang, M. Sarovar, Phys. Rev. Lett. 113 (2014)
$>$ We want disambiguation of the dynamics from the effects of actuation.

Quantum system identification

Examples:
> Hamiltonian identification

- Via special-case quantum process tomography E.g.,_Y. Wang, et al. IEEE Trans. Automat. Contr. 63, 1388-1403 (2018).
$>$ Measurement time traces
- Eigensystem realization algorithm
$>$ We want disambiguation of the dynamics from the effects of actuation.

Bilinear dynamic mode decomposition

Modifying DMDc for quantum control
J. Proctor et al. SIAM J. Appl. Dyn. Syst. (2016).
> Quantum control dynamics are bilinear:

$$
H(t)=H_{0}+\sum_{j=1}^{J} u_{j}(t) H_{j}
$$

> In terms of snapshot matrices, we want:

$$
\mathbf{X}^{\prime} \approx \mathbf{A} \mathbf{X}+\mathbf{B}(\mathbf{U} * \mathbf{X})
$$

A. Goldschmidt et al. New J. Phys. 23033035 (2021).
S. Peitz et al. SIAM J. Appl. Dyn. Syst. 19, 2162-2193 (2020).
I. Gosea, I. Duff. arXiv:2003.06484 [math.NA] (2020).

BiDMD

1. Measure the state and record the control inputs.

BiDMD

$$
\begin{aligned}
& \mathbf{x}=\left[\begin{array}{llll}
\mid & \mid & \mid \\
\mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{M-1} \\
\mid & \mid & & \mid
\end{array}\right] \\
& \mathbf{x}^{\prime}=\left[\begin{array}{llll}
\mid & \mid & \mid \\
\mathbf{x}_{2} & \mathbf{x}_{3} & \cdots & \mathbf{x}_{M} \\
\mid & \mid & & \mid
\end{array}\right] \\
& \mathbf{U}=\left[\begin{array}{llll}
\mid & \mid & \mid \\
\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{M-1} \\
\mid & \mid & & \mid
\end{array}\right]
\end{aligned}
$$

1. Measure the state and record the control inputs.
2. Assemble snapshot matrices.

BiDMD

1. Measure the state and record the control inputs.
2. Assemble snapshot matrices.

$$
\begin{aligned}
& \mathbf{x}=\left[\begin{array}{llll}
\mid & \mid & & \mid \\
\mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{M-1} \\
\mid & \mid & & \mid
\end{array}\right] \\
& \mathbf{X}^{\prime}=\left[\begin{array}{llll}
\mid & \mid & \mid \\
\mathbf{x}_{2} & \mathbf{x}_{3} & \cdots & \mathbf{x}_{M} \\
\mid & \mid & & \mid
\end{array}\right] \\
& \mathbf{U}=\left[\begin{array}{llll}
\mid & \mid & \mid \\
\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{M-1} \\
\mid & \mid & & \mid
\end{array}\right]
\end{aligned}
$$

3. Multiply.

$$
\mathbf{U} * \mathbf{X}=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\mathbf{u}_{1} \otimes \mathbf{x}_{1} & \mathbf{u}_{2} \otimes \mathbf{x}_{2} & \ldots & \mathbf{u}_{M-1} \otimes \mathbf{x}_{M-1} \\
\mid & \mid & & \mid
\end{array}\right]
$$

BiDMD

1. Measure the state and record the control inputs.
2. Assemble snapshot matrices.

$$
\begin{aligned}
& \mathbf{X}=\left[\begin{array}{llll}
\mid & \mid & & \mid \\
\mathbf{x}_{1} & \mathbf{x}_{2} & \cdots & \mathbf{x}_{M-1} \\
\mid & \mid & & \mid
\end{array}\right] \\
& \mathbf{x}^{\prime}=\left[\begin{array}{llll}
\mid & \mid & \mid \\
\mathbf{x}_{2} & \mathbf{x}_{3} & \cdots & \mathbf{x}_{M} \\
\mid & \mid & & \mid
\end{array}\right] \\
& \mathbf{U}=\left[\begin{array}{llll}
\mid & \mid & \mid \\
\mathbf{u}_{1} & \mathbf{u}_{2} & \cdots & \mathbf{u}_{M-1} \\
\mid & \mid & & \mid
\end{array}\right]
\end{aligned}
$$

3. Multiply.

$$
\mathbf{U} * \mathbf{X}=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\mathbf{u}_{1} \otimes \mathbf{x}_{1} & \mathbf{u}_{2} \otimes \mathbf{x}_{2} & \ldots & \mathbf{u}_{M-1} \otimes \mathbf{x}_{M-1} \\
\mid & \mid & & \mid
\end{array}\right]
$$

4. Compute the regression.

$$
\mathbf{X}^{\prime} \approx \mathbf{A X}+\mathbf{B}(\mathbf{U} * \mathbf{X}) \quad \longrightarrow\left[\begin{array}{ll}
\mathbf{A} & \mathbf{B}
\end{array}\right] \leftarrow \mathbf{X}^{\prime}\left[\begin{array}{c}
\mathbf{X} \\
\mathbf{U} * \mathbf{X}
\end{array}\right]^{+}
$$

Using biDMD for quantum control

> Extend biDMD with respect to the control.

$$
\mathbf{u}_{\mathrm{k}} \mapsto\left[\begin{array}{cc}
g_{1}\left(\mathbf{u}_{\mathrm{k}}\right) \\
g_{2}\left(\mathbf{u}_{\mathrm{k}}\right) \\
\vdots \\
g_{b}\left(\mathbf{u}_{\mathrm{k}}\right)
\end{array}\right] \quad \begin{gathered}
\text { M. O. Williams et al., } \\
\text { J. Nonlinear Sci. 25 } \\
\text { 1307-1346 (2015). }
\end{gathered}
$$

- Effective Hamiltonians produce lifted controls.
- Nonlinear control distortions must be discovered.
- Higher-order integrators remain control-affine if you put additional powers of $u(t)$ into U .
> Also, bootstrap to known models and incorporate operator constraints.

Using biDMD for quantum control

> Extend biDMD with respect to the control.

$$
\mathbf{u}_{\mathrm{k}} \mapsto\left[\begin{array}{c}
g_{1}\left(\mathbf{u}_{\mathrm{k}}\right) \\
g_{2}\left(\mathbf{u}_{\mathrm{k}}\right) \\
\vdots \\
g_{b}\left(\mathbf{u}_{\mathrm{k}}\right)
\end{array}\right] \quad \begin{aligned}
& \text { M. O. Williams et al., } \\
& \text { J. Nonlinear Sci. 25, } \\
& \text { 1307-1346 (2015). }
\end{aligned}
$$

- Effective Hamiltonians produce lifted controls.
- Nonlinear control distortions must be discovered.
- Higher-order integrators remain control-affine if you put additional powers of $\boldsymbol{u}(\boldsymbol{t})$ into U .
> Also, bootstrap to known models and incorporate operator constraints.

Using biDMD for quantum control

> Extend biDMD with respect to the control.

$$
\mathbf{u}_{\mathrm{k}} \mapsto\left[\begin{array}{c}
g_{1}\left(\mathbf{u}_{\mathrm{k}}\right) \\
g_{2}\left(\mathbf{u}_{\mathrm{k}}\right) \\
\vdots \\
g_{b}\left(\mathbf{u}_{\mathrm{k}}\right)
\end{array}\right]
$$

- Effective Hamiltonians produce lifted controls.
- Nonlinear control distortions must be discovered.
- Higher-order integrators remain control-affine if you put additional powers of $u(t)$ into U.
> Also, bootstrap to known models and incorporate operator constraints.

Two Examples

Apply bilinear DMD to a qubit in a rotating frame.
> Physical model:

$$
\mathbf{H}(\mathrm{t})=\boldsymbol{\Delta} \boldsymbol{H}_{\mathbf{0}}+u(t) \boldsymbol{H}_{\mathbf{1}}
$$

> Snapshots:
State: $\mathbf{x}(\mathrm{t})=\left[\begin{array}{c}\langle\boldsymbol{x}(t)\rangle \\ \langle\boldsymbol{y}(t)\rangle \\ \langle\mathbf{z}(t)\rangle\end{array}\right]$
Control: $\mathbf{g}(u(t))=\left[\begin{array}{c}u(t) \\ u(t)^{2} \\ u(t)^{3} \\ u(t)^{4}\end{array}\right]$

Example 1

> Identify an effective model for a qubit.

Example 1

> Identify an effective model for a qubit.

> Identify an effective model for a qubit.

Example 1

> Test by playing a constant pulse.

Example 1

> The biDMD accurately predicts the dynamics with just the initial condition and the new control.

Example 2

> Identify an effective model for a qubit in the presence of unknown nonlinear distortions on the control:

$$
\Theta(u)=u+0.1 u^{2}+\cos (u)
$$

Example 2

> A biDMD model with the extended control basis, $\mathrm{g}(u)$, captures the nonlinearity in the test pulse.

$$
\begin{array}{|ll|}
\hline\langle x\rangle & =\text { Sim. } \\
=\text { DMD } \\
\langle y\rangle & =\text { Sim. } \\
=\text { DMD } \\
\langle z\rangle & =\text { Sim. } \\
& =\text { DMD } \\
\hline
\end{array}
$$

Takeaways

$>$ There are lots of ways for modeling to go wrong. > Separately isolating each error can be difficult.
> In a single framework, biDMD accommodates the unknown dynamics in an interpretable way.

Takeaways

> There are lots of ways for modeling to go wrong.
> Separately isolating each error can be difficult.
> In a single framework, biDMD accommodates the unknown dynamics in an interpretable way.

Takeaways

> There are lots of ways for modeling to go wrong.
> Separately isolating each error can be difficult.
> In a single framework, biDMD accommodates the unknown dynamics in an interpretable way.

Takeaways

> There are lots of ways for modeling to go wrong.
> Separately isolating each error can be difficult.
> In a single framework, biDMD accommodates the unknown dynamics in an interpretable way.

Takeaways

$>$ There are lots of ways for modeling to go wrong.
> Separately isolating each error can be difficult.
> In a single framework, biDMD accommodates the unknown dynamics in an interpretable way.

Summary + questions?

A. Goldschmidt, E. Kaiser, J. L. DuBois, S. L. Brunton, J. N. Kutz, Bilinear dynamic mode decomposition for quantum control. New J. Phys. 23, 033035 (2021).

New work on model predictive control coming soon!

Backup slides

Extrapolation error for DMD

Model discrepancy at step n from training size m,

$$
\left\|\mathbf{x}_{\mathrm{n}}-\hat{\mathbf{x}}_{\mathrm{n}}\right\|_{2} \leq \kappa\left(\left\|\mathbf{x}_{\mathrm{m}}-\hat{\mathbf{x}}_{\mathrm{m}}\right\|_{2}+(n-m) \varepsilon_{m}\right)
$$

Accumulation from numerical integration
> True dynamics, x
> Predicted dynamics (only $\mathbf{x}_{\mathbf{0}}$ known), $\hat{\mathbf{x}}$
$>$ Number of DMD modes, κ
$>$ In the limit of more snapshots, $\varepsilon_{m} \rightarrow 0$

Outside the RWA
> In most quantum examples, the rotating wave approximation is appropriate.
$>$ We also looked at the case where we cannot make this approximation.

- DMD can accommodate stroboscopic data using the Floquet theory and the Magnus expansion (see our paper for more).

Example 3 (Floquet DMD)

$$
u(t)=u_{0} \cos (\omega t)
$$

Like Example 1, drive a strongly-coupled qubit slightly off-resonance.

Collect snapshots into a Floquet data matrix with T-periodic columns.

$$
\mathbf{X}_{\mathrm{F}}=\left[\begin{array}{cccc}
\mathbf{x}_{1} & \mathbf{x}_{s+1} & \ldots & \mathbf{x}_{(m-1) s+1} \\
\mathbf{x}_{2} & \mathbf{x}_{s+2} & \ldots & \mathbf{x}_{(m-1) s+2} \\
\vdots & \vdots & & \vdots \\
\mathbf{x}_{s} & \mathbf{x}_{2 s} & \ldots & \mathbf{x}_{(m-1) s+s}
\end{array}\right]
$$

$$
\mathbf{X}_{\mathrm{F}}^{\prime}=\left[\begin{array}{cccc}
\mathbf{x}_{s+1} & \mathbf{x}_{2 s+1} & \ldots & \mathbf{x}_{m s+1} \\
\mathbf{x}_{s+2} & \mathbf{x}_{2 s+2} & \ldots & \mathbf{x}_{m s+2} \\
\vdots & \vdots & & \vdots \\
\mathbf{x}_{2 s} & \mathbf{x}_{3 s} & \ldots & \mathbf{x}_{m s+s}
\end{array}\right]
$$

Floquet DMD resolves the fast scale dynamics.

$$
\mathbf{x}(t)=\sum_{j} \boldsymbol{\xi}_{j}(t) e^{\varepsilon_{j}\left(t-t_{0}\right)} c_{j}
$$

Floquet modes, $\boldsymbol{\xi}$
- Exact \times DMD $\quad \boldsymbol{-}$ RWA

Quasi-energies, ε

