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> ….To enhance the utility of Noisy, Intermediate 
Scale Quantum (NISQ) devices

Goals



> Data-driven discovery of effective Hamiltonian 
models

> ...For the optimal control of quantum gates and 
common algorithm sub-routines

> ….To enhance the utility of Noisy, Intermediate 
Scale Quantum (NISQ) devices

Goals



> Data-driven discovery of effective Hamiltonian 
models

> ...For the optimal control of quantum gates and 
common algorithm sub-routines

> ….To enhance the utility of Noisy, Intermediate 
Scale Quantum (NISQ) devices

Goals



> How many qubits do we want? 

> 1000s of high-fidelity (99.9%) physical qubits for 1 
logical qubit using quantum error correction.

> NISQ era: 100-1000s of physical qubits without 
error correction

Building a quantum computer

Caffeine ground state:
100s of qubits

J. Preskill, Quantum. 2, 79 (2018).
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Moore’s law for superconducting qubits

M. Kjaergaard et al. Annu. Rev. Condens. Matter Phys. 11, 369–395 (2020)



Quantum computing:
Layers of abstraction

Circuit model 
(2 qubits)

Thomas Alexander et al. Quantum Sci. Technol. 5 044006 (2020)
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Layers of abstraction
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Pulse 
sequences for 
control and 
measurement

Thomas Alexander et al. Quantum Sci. Technol. 5 044006 (2020)



> Quantum dynamics act linearly on the state.
𝝏𝜳
𝝏𝒕

= −𝒊𝑯𝜳

> Quantum control dynamics are bilinear in the 
state and control.

𝝏𝜳
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> Open loop: Design pulse using known models.
> Optimize a cost function to improve upon 

parameterized pulses.
– GRAPE, CRAB, Krotov, etc.

> Bad models mean bad gates.
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1. Unknown dynamics
2. Noise
3. Leakage to non-qubit states
4. Nonlinear control distortions
5. Cross-talk
> Difficulty increases with scale.

– A balancing act: protect (detune) vs. operate (couple)

Modeling challenges
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Example: CZ gate



> Even modeling errors 𝚫 < 𝟏% ruined the gate.

Example: CZ gate

D J Egger and F K Wilhelm 2014 Supercond. Sci. Technol. 27 014001



Use data.
> Model-based
> Model-free

– Ex post facto pulses “suited to the single yet uncertain 
physical system at hand”.

– Reinforcement learning

> Synthesis: Data-driven models suited to the 
system at hand.

Improvements

D. J. Egger, F. K. Wilhelm,. Phys. Rev. Lett. 112 (2014)
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Can we retain the underlying (effective) Hamiltonian structure?

Dynamic mode decomposition



> Goal: find a generator that describes the  
dynamics of a collection of observables.

Can we retain the underlying (effective) Hamiltonian structure?

Dynamic mode decomposition

temporal

“snapshot” ⇒ collection of observables 

spatial
(observable)

. . .



DMD: model-free regression.

2. Assemble snapshot matrices.

3. Compute the regression.

1. Collect data.

. . .
. . .



DMD: model reduction.

Modes, v!

spatial

Dynamics, 𝑒"!#

temporal

DMD model, 
∑! v$𝑒"!#𝑐!



DMD: model reduction.

Spatial  modes, v! Time  dynamics, 𝑒"!#

spatial temporal

DMD model, 
∑! v$𝑒"!#𝑐!

Fourier 
transform

Principle 
component 
analysis

DMD



Examples:
> Hamiltonian identification

– Via special-case quantum process tomography

> Measurement time traces
– Eigensystem realization algorithm

> We want disambiguation of the dynamics from 
the effects of actuation.

Quantum system identification

E.g., Y. Wang, et al. IEEE Trans. Automat. Contr. 63, 1388–1403 (2018).

J. Zhang, M. Sarovar, Phys. Rev. Lett. 113 (2014)
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> Quantum control dynamics are bilinear:

𝑯 𝒕 = 𝑯𝟎 +)
𝒋'𝟏

𝑱
𝒖𝒋 𝒕 𝑯𝒋

> In terms of snapshot matrices, we want:
𝐗* ≈ 𝐀 𝐗 + 𝐁 𝐔 ∗ 𝐗

Modifying DMDc for quantum control

Bilinear dynamic mode decomposition

J. Proctor et al. SIAM J. Appl. Dyn. Syst. (2016).

A. Goldschmidt et al. New J. Phys. 23 033035 (2021).

S. Peitz et al. SIAM J. Appl. Dyn. Syst. 19, 2162–2193 (2020).

I. Gosea, I. Duff. arXiv:2003.06484 [math.NA]  (2020).
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BiDMD

1. Measure the state and record 
the control inputs.

2. Assemble snapshot matrices.

3. Multiply.

4. Compute the regression.



> Extend biDMD with respect to the control.

– Effective Hamiltonians produce lifted controls.
– Nonlinear control distortions must be discovered.
– Higher-order integrators remain control-affine if you put 

additional powers of 𝒖(𝒕) into 𝐔.
> Also, bootstrap to known models and incorporate 

operator constraints.

Using biDMD for quantum control

M. O. Williams et al., 
J Nonlinear Sci. 25, 
1307–1346 (2015).
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> Physical model:
𝐇 t = 𝚫 𝑯𝟎 + 𝑢 𝑡 𝑯𝟏

> Snapshots:

State: 𝐱 t =
𝒙 (𝑡)
𝒚 𝑡
𝒛(𝑡)

Control: 𝐠(𝑢(𝑡)) =

𝑢(𝑡)
𝑢(𝑡)'

𝑢(𝑡))

𝑢(𝑡)*

Apply bilinear DMD to a qubit in a rotating frame.

Two Examples

Bloch sphere

𝒙 = 1

𝒛 = 1

𝒚 = 1



> Identify an effective model for a qubit.

Example 1

-- Control
amplitude

Expected
Bloch 
probability

Time

Physical simulation (training data)
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> Test by playing a constant pulse.

Example 1

Physical simulation (expected result)
-- Control
amplitude

Expected
Bloch 
probability

Time



> The biDMD accurately predicts the dynamics with just the initial 
condition and the new control.

Example 1

Subtle 
increase > 1, 
not physical.

-- Control
amplitude

Expected
Bloch 
probability

Time

Model prediction



> Identify an effective model for a qubit in the presence 
of unknown nonlinear distortions on the control:

Θ 𝑢 = 𝑢 + 0.1𝑢. + cos 𝑢

Example 2

Θ 𝑢(𝑡)
𝑢(𝑡)

Train 1 Train 2 Test
t



> A biDMD model with the extended control basis, g 𝑢 , 
captures the nonlinearity in the test pulse.

Example 2

t

𝑥
𝑦
𝑧



> There are lots of ways for modeling to go wrong.
> Separately isolating each error can be difficult. 
> In a single framework, biDMD accommodates the 

unknown dynamics in an interpretable way.

Takeaways
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> There are lots of ways for modeling to go wrong.
> Separately isolating each error can be difficult. 
> In a single framework, biDMD accommodates the 

unknown dynamics in an interpretable way.

Takeaways

Noise

Control 
distortions

Unknown 
dynamics

LeakageCross
-talk

Scale?

BiDMD



Summary + questions?

github.com/andgoldschmidt

A. Goldschmidt, E. Kaiser, J. L. DuBois, S. L. Brunton, J. N. 
Kutz, Bilinear dynamic mode decomposition for quantum 
control. New J. Phys. 23, 033035 (2021).

New work on model predictive control coming soon!



Backup slides



Model discrepancy at step n from training size m,

> True dynamics, 𝐱
> Predicted dynamics (only 𝐱𝟎 known), =𝐱
> Number of DMD modes, 𝜅
> In the limit of more snapshots, 𝜀/ → 0

Extrapolation error for DMD



> In most quantum examples, the rotating wave 
approximation is appropriate.

> We also looked at the case where we cannot make 
this approximation. 
– DMD can accommodate stroboscopic data using the Floquet 

theory and the Magnus expansion (see our paper for more).

Outside the RWA



Example 3 (Floquet DMD) 

Like Example 1, drive a strongly-coupled
qubit slightly off-resonance.

Collect snapshots into a Floquet data 
matrix with T-periodic columns.



Floquet DMD resolves the fast scale dynamics.


