Reinforcement Learning

Coverage of Q-learning follows this blog post...

https://adventuresinmachinelearning.com/reinforcement-learning-tutorial-python-keras/

The discussion of A3C and Cart-pole follows....

https://medium.com/tensorflow/deep-reinforcement-learning-playing-cartpole-through-asynchronous-
advantage-actor-critic-a3c-7eab2eea5296

Learning from
interactions

Reinforcement learning (RL) is learning what to do—
how to map situations to actions—so as to maximize
a numerical reward signal.

- Reinforcement Learning, Sutton and Barto (2012)

Key concepts:
Trial-and-error search
Delayed rewards

Exploration vs. exploitation

Vocabulary in RL

The agent (our baby) exists in a state within its environment (the room).
It takes actions (like trying to balance itself) according to a policy.

The action moves the agent to the next state and a reward is given (such
as pleasure from staying upright or pain from falling).

Agent in f“\.
astate> &
» {
- Reward S«)‘
S ﬁ _ .
Y ~ 'V/ Y. v
(Ff | X "‘\ /’ .
- \\ ‘f action according to Policy J
Environment ’

Find environments at https://gym.openai.com/

Gym is a toolkit for developing and
comparing reinforcement learning
algorithms. It supports teaching agents
everything from walking to playing games
like Pong or Pinball.

View documentation »
View on GitHub »

RandomAgent on SpaceInvaders-vO

Example 1: Nchain

Two actions (step forward / all-the-way backward).

Delayed rewards!
Some random slips.

1
L=

= |
]

= | fa
Iy n
Md | =i

Q-learning: Attempt 1 (Naive heuristic)

A (bad) policy .

0
° CQ(S,{I):::CQ(Sj{I)—+-T state1 O
. . 0
* Agent chooses its action based on the State 2

sum of all previous rewards state 3 O
State 4 0

Problems > |

. - ER
* No delayed rewards [% N

* No exploration

Move forward (0)

Move backward (1)
639006

129034
25418
4944
2762

Q-learning: Attempt 2 (Delayed rewards)

Move forward (0) Move backward (1)

A (better) policy State 0 0 29.66

* Q-learning: State1 0 29.84

Q(s,a) = Q(s,a) state 2 0 27.67
state 3 28.95 0

+a(r + v max Q(s',ad") —Q(s,a))

* Delayed rewards! y is called the
discounting factor and the amount we e w v
: . 0 =1 =
replace Q with future rewards \[% T R

State 4 0 31.20

* a is the learning rate (what percent of Q
do we update with each iteration?)

Q-learning: Attempt 3 (e-greedy)

Move forward (0) Move backward (1)

A (better) policy State 0 41.21 35.97
* Exploration! Randomly choose the State 1 43.56 37.47
action sometimes State2 41.56 42.67
: . 41.61 37.84

* Decay this randomness over time State 3
(simulated annealing) State 4 | 29:73 e

d Y I
Problem S V S

* That table might get huge. N—

Finally, a neural
network

£(0) = (r_|_yma;}xQ(5",a"|9)—Q(S_.ﬂ|9))2 input

0 T W R N

""llh—-.,\’..-—-ll"I
“ J vector

prediction

~
tareet

model = Sequential()

model . add(InputLayer(batch_input shape=(1, 5)))

model . add(Dense (18, activation='sigmoid’))
model.add(Dense(2, activation="linear’))
model.compile(loss="mse’, optimizer="adam', metrics=| 'mae’])

" i
>

S

Sigmoid
activated
hidden
layer
(10)

Q value
continuous
output (2, 1)

activated

F=T- - IS - ™ R T

e S -
= & b A W N = D

now execute the i]carnini

eps = 0.5
decay_factor = 0.999
roavg_list = []
for 1 1n range(num_episodes):
s = env.resel()
eps *= decay_factor
if 1 % 100 ==
print ("Episode {} of {}”.format(i + 1, num_episodes))
done = False
r.sum = 0
while not done:

a = np.random.randint (0, 2)
else:

a = np.argmax (model. predict(np.identity (5)[s:s + 1]))
new_s, r, done, _ = env.step(a)

S = new.s
r-sum +=r1
r_avg_list.append(r_sum / 1000)

Example 1: Results

Move forward (0) Move backward (1)

35 - State0 61.18 60.26
State1 64.52 61.16
~s\0\"'\\l

£ a state2 ©69.10 62.10
E State 3 75.03 63.53
o 251
% State 4 83.42 65.11
% 2.0 4
[iF]
E =

15 -

T T T T T
200 400 600 800 1000
Number of games

D_

That was slow.
An introduction to A3C

Asynchronous
Multiple agents (threads) are used.

Advantage
We value an action according to the advantage of following the policy rt for all
future actions.

Actor-Critic
Interchangeable with Q-learning (just another algorithm).

Example 2: Cart-pole (movie 1)

300 ~

250 ~

200 +

ge ep reward

150 -

ving avera

100 A

50 - ”?

T T T T T
0 200 400 600 800 1000
Step

Example 2: Cart-pole (movie 2)

300 ~

250 ~

Victory threshold

200 +

150 -

Py
¥
N

-

Moving average ep reward

T T T T T T
0 200 400 600 800 1000
Step

